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Abstract

We propose and implement a priority queue suitable for use in event driven molecular dynamics simulations. All oper-
ations on the queue take on average O(1) time per collision. In comparison, previously studied queues for event driven
molecular dynamics simulations require O(logN) time per collision for systems of N particles.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Molecular dynamics simulations are a powerful tool for determining the behavior of multiparticle systems
and are used in a wide range of applications [2,5,10,16,31,32,38].

There are two basic approaches to these simulations:

(i) Time driven simulations [2] in which equations of motion of all particles are solved for a series of small
time slices. The positions and velocities of the particles are determined at the end of each time slice and
used as input to the calculation for the next time slice.

(ii) Event driven simulations [1,3,13,25,12] which are applicable to systems of hard spheres or more generally
to systems with interparticle potentials which are piecewise constant. The approach with event driven
simulations is to determine when the next collision between two particles occurs, determine the positions
and velocities of these particles after the collision and then repeat this process. A collision is defined as
the event in which the hard spheres collide or more generally when two particles reach a discontinuity in
their interparticle potential.

We focus here on event driven simulations which, where applicable, provide exact results and typically run
faster than time driven simulations. Determination of the next event is usually composed of two steps [25]:
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(i) Determination of the collision event with the shortest time for each particle. By dividing the system into
cells and/or maintaining lists of particles within a certain distance of a given particle (neighbor lists), the
time taken for calculation of the first collision event for a given particle can be made independent of N,
the total number of particles in the system [13,12].

(ii) Determination of the collision event with the shortest time among all the particles, given the events with
the shortest time for each particle obtained in (i). Approaches have been proposed and implemented
which allow this determination in O(logN) time.

The subject of this paper is an approach to determining the next collision event among all particles. This has
been a heavily researched subject [26–28,30,34]. The requirements for a queue to allow this determination is as
follows. The queue must support:

(i) addition of an event to the queue;
(ii) identification and deletion from the queue of the event with the shortest collision time;

(iii) deletion of a given event from the queue (e.g. when a collision (p,q) occurs we may want to remove the
event (q,p) from the queue.) These requirements define abstractly the concept of a priority queue.

Implementations of priority queues for molecular dynamics simulations have for the most part been based
on various types of binary trees. They all share the property that determining the event in the queue with the
smallest value requires O(logN) time [28].

The early work on priority queues is reviewed in Ref. [22]. The earliest implementations of priority
queues used linked lists which results in O(N) performance. Implementations with O(N0.5) performance
were introduced and analyzed in Refs. [7,18,19,23]. The oldest priority queue implementations with
O(logN) performance used implicit heaps binary trees in which each item always has a priority higher than
its children and the tree is embedded in an array [6,24,40]. Other O(logN) implementations include leftist

trees [24], binomial queues [8,39], pagodas [14,29], skew heaps [35,37], splay trees [35–37] and pairing heaps

[15].
Marin et al. [27,28] introduced a version of the complete binary tree which also has O(logN) performance

and compared it to earlier priority queue implementations explicitly in the context of molecular dynamics sim-
ulations. They find that over a wide range of densities their complete binary tree variant has the best perfor-
mance in terms of the coefficient of the logN term and large N behavior.

In this work, we propose a priority queue for use in event driven molecular dynamics simulations for which
all operations require O(1) time. The approach is inspired by the concept of a bounded priority queue which is
typically implemented as an array of linear lists and which is applicable to problems in which the values asso-
ciated with queue items are integers and are bounded (i.e. the values t associated with events obey a < t < b

where a and b are constants). Bounded priority queues are not directly applicable to the molecular dynamics
queueing problem because neither of these requirements are met.

We show, however, that with a hybrid approach that employs both a normal priority queue and a bounded
priority queue we can ensure all operations on the queue take O(1) time. We make use of the facts that for
molecular dynamics simulations:

(i) The time associated with an event to be added to the queue is always later than the time associated with
the last event removed from the top of the queue. That is,
t � tlast P 0; ð1Þ

where t is the time associated with the event to be added to the queue and tlast is the last event removed
from the top of the queue.
(ii) There exists a constant, Dtmax such that
t � tlast < Dtmax: ð2Þ

We call a priority queue which supports such events a Bounded Increasing Priority Queue (BIPQ).
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2. Approach

The basic idea is to:

(i) perform a gross sort of the events using an array of linear lists and
(ii) to use a binary tree to perform a fine sort of only those events which are currently candidates for the

event with the shortest time.

More specifically, our priority queue is composed of the following components:

1. An array, A, of n linear lists li, 0 6 i < n. (Section 4 below discusses how to determine the size n of the
array.) The array is treated in a circular manner. That is, the last linear list in the array is followed logically
by the first linear list. We implement each linear list as a doubly linked list.

2. A binary tree which is used to implement a conventional priority queue.

We also maintain two additional quantities: the current index, i*, and i0 a base index associated with the
queue. Initially, all linear lists and the binary tree are empty and i* and i0 are 0.

3. Queue operation

Here we describe how operations on the queue are implemented using the data structures described above.

(i) Addition. Events are added to either one of the linear lists or to the binary tree as follows: An index i for
the event to be added is determined by
i ¼ bs � t � i0c; ð3Þ
where t is the time associated with the event; i0 is the base index; and s is a scale factor the value of which
is such the binary tree never contains more than a relatively small number of events (�10–20). If i is
equal to the current index, i*, the event is added to the binary tree, otherwise it is added to linear list li.
(ii) Identification of the event with shortest time. The event with the shortest time is simply the root of the
binary tree, as is the case with a normal priority queue implemented using a binary tree. If a request is
made for the event with the smallest time and the binary tree is empty, the current index is incremented
by one (wrapping around to i* = 0 if we reach the end of the array) and all events in the linear list li� are
inserted in the binary tree. If there are none, we continue to increment i* until a non-empty linear list is
found. If we wrap around to the beginning of the list, i0 is incremented by n. We find that in practice,
when the binary tree becomes empty the next linear list is always non-empty (see Section 4 in which we
show the distribution of event times).

(iii) Deletion of an event. We simply delete the event from the array of linear lists or from the binary tree
depending on the structure in which it is located.

The fact that the time associated with an event to be added to the queue is always greater than or equal to
the time associated with the last event removed allows us to use the array of linear lists in a circular fashion.

The requirement that there exists a constant, Dtmax such that
t � tlast > Dtmax ð4Þ

allows us to use a finite number of linear lists. The number of linear lists required is proportional to Dtmax. In
practice we find that we can always find a reasonable value of Dtmax such that Eq. (2) holds. If a rare event occurs
which violates this constraint or we want to use less memory for linear lists causing the constraint to be violated,
the event is handled on an exception basis as implemented in the processOverflowList function in code contained
in the Appendix. Alternatively, the application which calls the priority queue code can guarantee that such an
event never occurs by creating an earlier fictitious collision with a time which does not violate the constraint.

Thus all of the events, except for those deleted before they are placed in the binary tree, will eventually be
added to the binary tree, but at any given time the tree, instead of containing O(N) entries, will contain only a
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relatively small number of entries. The number of events maintained in the binary tree is only a fraction of the
total number of particles N in the system and can be made independent of N.

Our priority queue is similar to a calendar queue [9]; however, the calender queue does not employ a binary
tree – events are sorted in each of the linear lists.

4. How to choose parameters

Two parameters, n the number of linear lists and s the scale factor, must be chosen to specify the implemen-
tation of the queue. Operationally, they can be chosen as follows:

(i) First, by instrumenting the queue to count the number of events in the binary tree, determine a value of s

such that the number of events in the binary tree is relatively small (�10–20). Table 1 and Fig. 1(a) sum-
marize the values of s we have used for our simulations. The figure is consistent with a scale factor linear
in N with a different coefficient of linearity dependent on density. Because we use a binary tree to store
events with the soonest times, the performance of the algorithm is somewhat insensitive to the choice of
s. For example, a choice of s which results in a doubling of the number of events in the binary tree results
in only one additional level in the tree.

(ii) Instrument the queue to find Dtmax, the maximum difference between the time associated with an event to
be added and the time associated with the last event removed and set
Table
Param

Numb
N

q = 0.0
1000
8000
64,000
512,00

q = 0.1
1000
8000
64,000
512,00

q = 0.4
1372
8788
70,304
530,60

q = 0.7
1372
8788
70,304
530,60
n ¼ s � Dtmax ð5Þ
to ensure that Eq. (2) is met. Table 1 and Fig. 1(b) summarize the number of linear lists n we have used
for our simulations. As with s, n is linear in N with a different coefficient of linearity dependent on den-
sity. We note that while memory requirements are O(N) as in the conventional implementation of pri-
ority queues, the hybrid implementation does require significantly more memory than the
conventional implementation due to the memory required for the linear lists. Tradefoffs can be made
of cpu time for memory by increasing the scale factor and/or reducing the number of linear lists (result-
ing in more exception conditions).
1
eters of molecular dynamics simulations

er of particles Scale factor of lists Number
s n

1
100 25,000
700 200,000
5000 2.5 · 106

0 45,000 25 · 106

2
50 50,000
500 400,000
3400 5 · 106

0 25000 50 · 106

1000 250,000
7500 26

60,000 16 · 106

4 500,000 130 · 106

15,000 500,000
75,000 200,000
500,000 35 · 106

4 4 · 106 300 · 106
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Fig. 1. (a) Scale factor, s, vs N for (from bottom to top) q = 0.12, 0.01, 0.4 and 0.7. (b) Number of linear lists, n, vs N for (from bottom to
top) q = 0.01, 0.12, 0.4 and 0.7.
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Fig. 2(a) plots hmîi the average number of events with index î versus î for various N. Here
Fig. 3.
(triang

Fig. 2.
right N
î � ði� i� þ nÞ mod n: ð6Þ

That is, î is the distance of i from the current index taking into account the circular nature of the array of linear
lists. The data was obtained by sampling the queue many times at regular intervals. With the choice of scale
factors shown in Table 1 we achieve our goal of having �10–20 events with index i = i* and thus in the binary
tree. Note that to achieve this, the scale factor increases with increasing N resulting in the cutoff of the distri-
butions also increasing with increasing N. (In fact, if the x-axis is transformed by x = x/N, the plots collapse as
shown in Fig. 2(b) reflecting the fact that the probability distribution of collision times is independent of N.)
Thus, the number of linear lists required to ensure that Eq. (2) holds also increases with N. In Fig. 3, we plot
the distribution P(m*) the probability that the number of events with the current index, i* is m* versus m*. The
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(a) For q = 0.12, the average number of events hmîi with index î versus î (the distance of i from the current index i*) for (from left to
= 1000, 8000, and 64,000. (b) Same as (a) with the x-axis scaled by 1/N which results in a collapse of the plots.
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distributions are strongly peaked indicating that the number of events in the binary tree do not vary much
from the average.

5. Complexity analysis

The basic operations involved in the queue are:

(i) Insertion into and deletion from the linear lists. Use of doubly linked lists allows these operations to be
implemented to take O(1) time.

(ii) Binary tree operations. We use the code of Ref. [28] to implement the binary tree operations. When a leaf
representing an item in the priority queue is added to or deleted from the tree, the tree must be traversed
from the affected leaf possibly all the way to the root node and adjustments made to reflect the presence
or absence of the affected leaf. Thus a bound on the number of levels which must be traversed is log2m

where m is the number of items in the priority queue. In Section 4 we show that by choosing the scale
factor s appropriately, m can be made to be independent of N (and have a relatively small value, �10–
20). Thus binary tree operations will be O(1).

(iii) Identification of the next non-empty linear list, after the current linear list is exhausted. As explained in
item (ii) of Section 3, when the binary tree is empty, we search forward through the array of linear lists
until a non-empty list is found. If the number of lists we must search through increases with N, this pro-
cess will not be O(1). We show below that with the proper choice of s, the number of lists we must search
does not grow with N and in fact show that the next linear list after the current one almost always is non-
empty. Thus the complexity of identification of the next non-empty list will be O(1).

Thus the overall time taken by queue operations per collision is O(1).

6. Experiments/simulations

We run simulations using both a conventional priority queue and our new hybrid approach. For simplicity
the simulation was of identical size hard spheres of radius one and unit mass. The sizes L of the cubic systems
are set to maintain equal densities. The parameters of the simulation are as shown in Table 1.

To demonstrate the performance of our approach, we run simulations for cubic systems at four volume
densities q = 0.01, 0.12, 0.40 and 0.70. The first density represents a rarefied gas and the last density represents
a jammed system. The jamming density for hard sphere systems is �0.64 [11]. For both the conventional pri-
ority queue and the hybrid queue we used the binary tree code from Ref. [28].

Fig. 4 shows the time taken for 107 collisions for queue operations with both a conventional priority queue
and the hybrid queue. As expected, the time for the conventional priority queue increases as logN while the
time for the hybrid queue is essentially constant.

There is, however, a slight upward trend in the hybrid queue results. To determine if this trend is a feature
of the algorithm or of the benchmark environment, we proceed as follows.

We first study the only two places in the hybrid code where looping is involved:

(i) in the updateCBT function of Ref. [28] we loop as we traverse the binary tree. If we traverse more levels
as the N grows, the algorithm will not be O(1). To explore this possibility, we instrument the function to
count the number of levels we traverse in the tree. The results are shown in Fig. 4. The number of loop
iterations is essentially constant, independent of N.

(ii) in the deleteFirstFromEventQ function, after the priority queue for the current linear list is exhausted,
we loop until we find a non-empty list. If the number of lists we must examine before we find the first
non-empty list grows with the system size, the algorithm will not be O(1). We examine this possibility
by counting the number of times we encounter an empty list and find that on average the probability
of encountering an empty list does not grow with N and that the probability of encountering an
empty list is very small: we encounter an empty list only 10�4 of the times after exhausting the pri-
ority queue.
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Fig. 4. Processing time for queue operations vs. N, the number of particles in the system. (a) Volume density q = 0.01. The higher solid
line is the processing time for queue operation for a normal priority queue; the lower solid line is for the hybrid queuing system introduced
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Having ruled out dependence of the number of loop iterations on N as the source of the upward trend in the
execution times, we now consider whether the larger memory needed as N increases is the cause of the trend.
All modern computer processors employ high speed cpu cache memory to reduce the average time to access
memory [17,20]. In fact, the processor we use in our simulations, the AMD Opteron, employs a two-level
memory cache (64 KB level 1 cache, 1 MB level 2 cache) [4]. A similar cache structure is used in the Intel Xeon
processor [21]. Because memory caches are finite size, if the memory access is random the larger the memory
used by a program, the lower the probability that data will be found in the cache resulting in slower instruction
execution. The effect of cache in benchmark runtimes has been studied in Ref. [33]. We study the effect of the
finite size of the cache in our system as follows: Instead of running the molecular dynamics simulations, we run
a small test program which randomly accesses the data structures used by the molecular dynamics simulations.
For each value of N, the test program executes exactly the same number of instructions but uses data struc-
tures of the size used by the molecular dynamics simulations for that value of N. The results are shown in
Fig. 4 and show an upward trend similar to that of the simulation results for all of the densities studied.

The above results thus suggest that the complexity of the hybrid algorithm is, in fact, O(1) and that the
upward trend in the results is due to the finite size of the high speed memory cache.

7. Discussion and summary

We have defined a new abstract data type, the Bounded Increasing Priority Queue (BIPQ) having the same
operations as a conventional priority queue but which takes advantage of the fact that the value associated
with an item to be added to the queue has the properties that: (i) the value is greater than or equal to the value
associated with the last item removed from the top of the queue and (ii) the value minus the value of the last
item removed from the top of the queue is bounded. These properties are obeyed for events in event driven
molecular dynamic simulations. We implement a BIPQ using a hybrid approach incorporating a conventional
priority queue (implemented with a binary tree) and a bounded priority queue. All operations on the BIPQ
take an average O(1) time per collision. This type of queue should provide performance speedups for molec-
ular dynamics simulations in which the event queue is the bottleneck.
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Appendix

The following code implements the hybrid queue proposed here. The calls to Insert and Delete are to the
functions contained in Ref. [28], which update NP and the complete binary tree, CBT. Any code providing the
same functions could be substituted for Insert and Delete.

#define nlists 50000
#define scale 50

typedef struct
{

int next;
int previous;
int p;
int q;
int c;
double t;
unsigned int qMarker;
int qIndex;
statusType status;

} eventQEntry;

eventQEntry * eventQEntries;
double baseIndex;

int * CBT; /* complete binary tree
implemented in an array of
2*N integers */

int NP; /*current number of particles*/

int linearLists[nlists+1];/*+1 for overflow*/ int currentIndex;

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int insertInEventQ(int p)
{

int i, oldFirst;
eventQEntry * pt;
pt=eventQEntries+p; /* use pth entry */
i=(int)(scale*pt�>t�baseIndex);
if(i>(nlists�1)) /* account for wrap */

{
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i�=nlists;
if(i>=currentIndex�1)
{

i=nlists; /* store in overflow list */
}

}

pt�>qIndex=i;
if(i==currentIndex)
{

Insert(p); /* insert in PQ */
}
else
{

/* insert in linked list */
oldFirst=linearLists[i];
pt�>previous=�1;
pt�>next=oldFirst;
linearLists[i]=p;
if(oldFirst!=�1)
eventQEntries[oldFirst].previous=p;

}
return p;

}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

processOverflowList()
{

int i,e,eNext;
i=nlists; /* overflow list */
e=linearLists[i];
linearLists[i]=�1; /* mark empty; we will treat all entries and may re-add some */
while(e!=�1)
{

eNext=eventQEntries[e].next; /* save next */
insertInEventQ(e); /* try add to regular list now */
e=eNext;

}
}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void deleteFromEventQ(int e)
{

int prev,next,i;
eventQEntry * pt=eventQEntries+e;
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i=pt�>qIndex;
if(i==currentIndex)

Delete(e); /* delete from pq */
else
{

/* remove from linked list */
prev=pt�>previous;
next=pt�>next;
if(prev==�1)

linearLists[i]=pt�>next;
else

eventQEntries[prev].next=next;
if(next!=�1)
eventQEntries[next].previous=prev;

}
}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

int deleteFirstFromEventQ()
{

int e;
while(NP==0)/*if priority queue exhausted*/
{

/* change current index */
currentIndex++;
if(currentIndex==nlists)
{

currentIndex=0;
baseIndex+=nlists;
processOverflowList();

}

/* populate pq */
e=linearLists[currentIndex];
while(e!=�1)
{

Insert(e);
e=eventQEntries[e].next;

}
linearLists[currentIndex]=�1;

}
e=CBT[1]; /* root contains shortest

time entry */
Delete(CBT[1]);
return e;

}
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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